Quantifying Fertilizer Application Response Variability with VHR Satellite NDVI Time Series in a Rainfed Smallholder Cropping System of Mali

نویسندگان

  • Xavier Blaes
  • Guillaume Chomé
  • Marie-Julie Lambert
  • Pierre Sibiry Traoré
  • Antonius G. T. Schut
  • Pierre Defourny
چکیده

Soil fertility in smallholder farming areas is known to vary strongly on multiple scales. This study measures the sensitivity of the recorded satellite signal to on-farm soil fertility treatments applied to five crop types, and quantifies this fertilization effect with respect to within-field variation, between-field variation and field position in the catena. Plant growth was assessed in 5–6 plots per field in 48 fields located in the Sudano-Sahelian agro-ecological zone of southeastern Mali. A unique series of Very High Resolution (VHR) satellite and Unmanned Aerial Vehicle (UAV) images were used to calculate the Normalized Difference Vegetation Index (NDVI). In this experiment, for half of the fields at least 50% of the NDVI variance within a field was due to fertilization. Moreover, the sensitivity of NDVI to fertilizer application was crop-dependent and varied through the season, with optima at the end of August for peanut and cotton and early October for sorghum and maize. The influence of fertilizer on NDVI was comparatively small at the landscape scale (up to 35% of total variation), relative to the influence of other components of variation such as field management and catena position. The NDVI response could only partially be benchmarked against a fertilization reference within the field. We conclude that comparisons of the spatial and temporal responses of NDVI, with respect to fertilization and crop management, requires a stratification of soil catena-related crop growth conditions at the landscape scale.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the Relationship between Burn Severity Field Data and Very High Resolution GeoEye Images: The Case of the 2011 Evros Wildfire in Greece

Monitoring post-fire vegetation response using remotely-sensed images is a top priority for post-fire management. This study investigated the potential of very-high-resolution (VHR) GeoEye images on detecting the field-measured burn severity of a forest fire that occurred in Evros (Greece) during summer 2011. To do so, we analysed the role of topographic conditions and burn severity, as measure...

متن کامل

Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology

Changing trends in ecosystem productivity can be quantified using satellite observations of Normalized Difference Vegetation Index (NDVI). However, the estimation of trends from NDVI time series differs substantially depending on analyzed satellite dataset, the corresponding spatiotemporal resolution, and the applied statistical method. Here we compare the performance of a wide range of trend e...

متن کامل

Understanding variability in crop response to fertilizer and amendments in sub-Saharan Africa

Improved understanding of soil fertility factors limiting crop productivity is important to develop appropriate soil and nutrient management recommendations in sub-Saharan Africa. Diagnostic trials were implemented in Kenya, Malawi, Mali, Nigeria and Tanzania, as part of the African Soils Information Service (AfSIS) project, to identify soil fertility constraints to crop production across vario...

متن کامل

Corn production and plant characteristics response to N fertilization management in dry-land conventional tillage system

Nitrogen (N) application management needs to be refined for low yielding environments under dryland conditions. This 3-yr study examined nitrogen fertilization management effects on corn (Zea mays L.) plant characteristics and grain yield in rain fed environment under conventional tillage system. Nitrogen fertilization management consisted of two timing methods of N application [all N at planti...

متن کامل

Mapping Irrigated and Rainfed Wheat Areas Using Multi-Temporal Satellite Data

Irrigation is crucial to agriculture in arid and semi-arid areas and significantly contributes to crop development, food diversity and the sustainability of agro-ecosystems. For a specific crop, the separation of its irrigated and rainfed areas is difficult, because their phenology is similar and therefore less distinguishable, especially when there are phenology shifts due to various factors, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016